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Abstract

During the TORCH campaign a zero dimensional box model based on the Master
Chemical Mechanism was used to model concentrations of OH radicals. The model
provided a close overall fit to measured concentrations but with some significant devia-
tions. In this research, an approach was established for applying Generalized Additive5

Models to atmospheric concentration data. Two GAM models were fitted to OH radical
concentrations using TORCH data, the first using measured OH data and the second
using MCM model results. GAM models with five smooth functions provided a close
fit to the data with 78% of the deviance explained for measured OH and 83% for mod-
elled OH. The GAM model for measured OH produced substantially better predictions10

of OH concentrations than the original MCM model results. The diurnal profile of OH
concentration was reproduced and the predicted mean diurnal OH concentration was
only 0.2% less than the measured concentration compared to 16.3% over-estimation
by the MCM model. Photolysis reactions were identified as most important in explain-
ing concentrations of OH. The GAM models combined both primary and secondary15

pollutants and also anthropogenic and biogenic species to explain changes in OH con-
centrations. Differences identified in the dependencies of modelled and measured OH
concentrations, particularly for aromatic and biogenic species, may help to understand
why the MCM model predictions sometimes disagree with measurements of atmo-
spheric species.20

1 Introduction

Advances in our knowledge of atmospheric chemistry are critical to developing effec-
tive policy measures for air quality; a major issue for human health, the growth of
crops and natural vegetation. Environmental policies to address air quality issues have
burgeoned worldwide since the 1950s. It is estimated that the European Community25

strategy on air pollution defined within the 6th Environmental Action Programme (Eu-
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ropean Parliament and Council, 2002) will reduce premature deaths in Europe by over
60 000 per year by 2020 (Bower et al., 2006).

The hydroxyl (OH) radical is one of the most important atmospheric chemical
species. It participates in reactions with many longer lived chemical species includ-
ing volatile organic compounds (VOCs), carbon monoxide, NOx and ozone. OH radical5

reactions also lead to the production of other reactive species like the hydroperoxy
(HO2) and organic peroxy (RO2) radicals (Fig. 1). OH plays a key role in photochemi-
cal reactions being both produced and destroyed in reaction cycles which contribute to
the production of ozone in polluted atmospheres. Understanding the behaviour of the
OH radical and its interactions with other chemical species is crucial to improving the10

accuracy of atmospheric models.
Recent advances in the understanding of OH radical chemistry have been developed

from measurements of OH concentrations in different atmospheric environments, rang-
ing from urban to extremely clean (e.g. see review by Heard and Pilling (2003)). In par-
allel, zero-dimensional box models constrained by observations of longer lived chemi-15

cal species, have been employed to model the evolution of the atmospheric chemistry
and provide insight into the chemical processing, for example see Emmerson et al.
(2005, 2007).

The Tropospheric ORganic CHemistry campaign (TORCH) took place during the
summer of 2003 at a rural site about 25 miles north east of central London. The site20

at Writtle in Essex was surrounded by crop-based agriculture (sunflowers and grain).
During the highly instrumented campaign, there were a large number of measurements
made of long-lived and radical species as well as meteorological and aerosol parame-
ters (Lee et al., 2006). The wealth of measurements allowed a zero-dimensional box
model based on a highly detailed chemical mechanism (MCM v3.1, Jenkin et al., 2003;25

Saunders et al., 2003) and constrained by longer-lived measurements, to be used to
predict radical concentrations for comparison with measurements (Emmerson et al.,
2007). On average, measured hydroxyl radical concentrations were over-predicted by
24%, those of the hydroperoxy (HO2) over-predicted by 7%, and the sum of peroxy
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radicals (HO2+RO2) under-predicted by 22% (Emmerson et al., 2007). Although there
was good overall agreement achieved between modelled and measured OH concen-
trations, there were also large differences on individual days (Emmerson et al., 2007).

There are a number of possible reasons for the observed discrepancies. There were
gaps in data set owing to limitations on the number of atmospheric chemical species5

that could be measured. Potentially important omissions include biogenic hydrocar-
bons like the monoterpenes, larger (greater than C10) hydrocarbons and nitrous acid
(HONO). There are also experimental uncertainties. The spectroscopic method, Flu-
orescence Assay by Gas Expansion (FAGE) (Creasey et al., 2003; Heard and Pilling,
2003), was used to measure OH radical concentrations in the TORCH experiment.10

Uncertainty due to variation in FAGE measurement errors has been estimated, at one
standard deviation, to be 30% of the measured concentration (Smith et al., 2006). The
measurement data used to constrain the model (for example NOx, NMHC, O3 etc.)
also have associated uncertainties.

Areas of uncertainty also remain in the understanding of atmospheric chemistry and15

its representation in the MCM v3.1 mechanism. The MCM uses large numbers of rate
coefficients, which in many cases have been estimated from analogous reactions rather
than being evaluated directly from experimental results. There are almost certainly
further unknown gaps and limitations in the current knowledge of OH radical chemistry
and its representation in models. These experimental errors and areas of uncertainty20

will also contribute to discrepancies between measured OH radical concentrations and
modelled concentrations.

An interesting observation reported in several papers is that the modelled and mea-
sured OH concentration dependencies on other species were found to differ. For in-
stance, Emmerson et al. (2007) showed that the modelled HO2:OH ratio had a stronger25

relationship with NO than measured during the TORCH campaign. Modelled HO2:OH
ratios also showed a stronger relationship with NO than measured in the “Pollution
of the Urban Midlands Atmosphere” (PUMA) summer campaign of 1999 (Emmerson
et al., 2005), in the “PM2.5 Technology Assessment and Characterization” (PMTAC)
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study (Ren et al., 2003) and during the “Berlin Ozone Experiment” (BERLIOZ) (Konrad
et al., 2003). The stronger dependence on NO concentrations for model results com-
pared to measurements could indicate that some of the rate coefficients tied up with
NOx concentrations in the models may be in error. This feature is a major motivation
for the current research: by identifying differences between modelled and measured5

radical concentration dependencies on other species, it may be possible to begin to
understand why models and measurements of atmospheric species sometimes dis-
agree with each other.

In order to investigate any such potential differences, Generalized Additive Models
(GAMs) (Hastie and Tibshirani, 1990) have been employed. GAMs are an extension of10

generalized linear models (McCullagh and Nelder, 1989), and are a flexible statistical
tool useful for fitting non-parametric relationships whilst retaining clarity of interpreta-
tion. The relationship between a response variable and selected predictor variables is
expressed as the sum of a number of non-parametric predictor variable functions. Such
models have proven useful for studying the complex non-linear relationships that exist15

between atmospheric chemical species. They have been applied to modelling nitrogen
dioxide concentrations (Carslaw and Carslaw, 2007; Carslaw et al., 2007; Westmore-
land et al., 2007), and those of benzene and 1,3-butadiene (Reiss, 2006). In these
examples, the methodology has been employed to standardise data gathered under
variable meteorological conditions adjusting for the non-linear effects involved. Such20

an adjustment facilitates investigation of the underlying trends in pollutant concentra-
tions.

In this research, GAMs were used to construct statistical models for measured and
modelled OH radical concentrations (response variables). Predictor variables were se-
lected from measurements of meteorological parameters and concentrations of primary25

or secondary pollutants made during the TORCH campaign and used to constrain the
chemical box model. This process permits identification of predictor variables which
strongly influence the modelled or measured OH concentrations. In particular, it may
be possible to infer sources of error in the MCM model, perhaps in the various rate co-
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efficients that have been estimated. Further, it may be possible to reduce the number
of input parameters needed to predict real atmospheric measurements. Finally, it may
allow prediction of OH concentrations (and other species) where measurements are
unavailable.

2 Methodology5

2.1 Data

During the TORCH campaign, there were 59 model input constraints: Concentrations
of 39 VOC species, NO, NO2, CO, O3, PAN, H2O, 9 photolysis coefficients (of O3 (to
form O(1D)), NO2, H2O2, HCHO (to form HO2), HCHO (to form H2), HNO3, HONO,
acetaldehyde and acetone) and 5 physical parameters (temperature, density of air “M”,10

aerosol surface loss rate of HO2, measure of cloudiness and aerosol surface area).
There were 1014 data points with coincident measurements of the relevant 59 param-
eters plus modelled and measured OH concentrations. Data were available for an initial
period of 9 days and a second period of 13 days with the break in the middle due to
instrument failure.15

All input parameters were either averaged or interpolated to give 15-min input values
as described in Emmerson et al. (2007). Further manipulation of these data points was
necessary to remove outliers, which may unduly bias the GAM construction, leaving
933 points for further analysis. The mean values for key input constraints in the TORCH
campaign are summarised in Table 1.20

2.2 Generalized Additive Models

Separate GAMs were produced for modelled and measured OH concentrations. Non-
parametric relationships between response and predictor variables were expressed
in terms of smooth functions (smooths) developed using thin plate regression splines
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(Wood, 2006). The statistical software R (version 2.5.0 for Windows) was used for all
calculations, with the integrated mgcv package (version 1.3-23) being used to produce
the GAMs (R Development Core Team, 2007).

Figure 2 shows an example of a smooth function for a simple model relating [OH]
with photolysis rate. The relationship between the i th observation in the data, smooth5

function s(), constant a, and residual error εi is represented by:

[OH]i = a + s(photolysis ratei) + εi (1)

For a model with n smooth functions (predictor variables) this relationship gener-
alises to:

Ci =
n∑

j=1

sj (xi ) + a + εi (2)10

The i th concentration in the time series is Ci .sj (xi ) is the smooth for the j th variable
and gives the value of this smooth for the i th observation. εi is the residual error for this
observation and a is a constant. An iterative process was used to select the predictor
variables. New variables were added one at a time and the variable that maximised
the level of deviance explained was retained:15

Step 1 – The first variable was selected. Single variable GAMs were run for all variables and
ranked in order of deviance explained. The variable with the highest level of deviance explained
was chosen as the first variable for the model.

Step 2 – The next variable was selected. Each of the remaining variables was added in turn to
the one variable model from Step 1 and the deviance explained re-calculated. The additional20

variable that produced the highest level of deviance explained was then selected.

Step 3 – Confirm variable choice from Step 1. The variable selected in Step 1 was removed
and each of the remaining variables was added in turn to the variable selected in Step 2. The
variable that gave the highest level of deviance explained was selected. If it was a different
variable to Step 1, the combination of two variables that gave the highest level of deviance25

explained was chosen.
14613
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Step 4 – Collinearity was tested. Collinearity occurs when two predictor variables have a near
perfect linear relationship. Its presence in a regression model makes the contribution of each
individual variable difficult to discern, introduces redundancy and it can cause results to be
overly sensitive to changes in data. Collinearity was tested using the variance inflation factor
(VIF) for each predictor variable:5

VIF =
1

1 − R2
j

(3)

where R2
j is the coefficient of determination from a linear regression of variable j in the model

against the other variables (Freund and Wilson, 1998). A maximum value of five was accepted
for the variance inflation factor (Montgomery and Peck, 1992). If this value was exceeded, the
collinear variable making the least contribution in terms of deviance explained was removed10

from the model.

Step 5 – Steps 2 to 4 were repeated. The process was repeated until an additional variable in-
creased the deviance explained by less than one percent or a maximum of five variables was
achieved. The limit of five variables was imposed to control the complexity of the resulting GAM
and facilitate interpretation of the results. For both measured and modelled OH GAM models,15

an adequate fit to the data was achieved with five variables and adding a sixth variable yielded
a minor improvement in the fit.

Step 6 – Robustness of the selected model was checked. Each variable was checked for a p-
value significant at the 0.1% significance level. The sensitivity of results to changes in param-
eters in the smoothing process was also checked. The residuals were checked to confirm that20

their distribution was approximately a normal distribution with zero mean and that they exhibited
no clear relationship with the predictor variables or fitted values. The Durbin-Watson test statis-
tic was used to test the independence of GAM residuals (Chatfield, 1992). Autoregression was
investigated using correlograms for measured OH concentrations, modelled OH concentrations
and GAM residuals.25
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3 Results

To avoid confusion in terminology the following conventions have been used through-
out: ‘modelled data’ or ‘model results’ refer to results from the MCM box models;
‘measured OH radical concentrations’ refer to the concentrations measured during the
TORCH campaign; the generalized additive models are referred to as GAMs and their5

results as GAM results; lastly “GAMME ” and “GAMMO” are GAMs for the TORCH mea-
sured and modelled OH concentrations respectively.

3.1 TORCH Measured OH (GAMME )

The GAM produced for the TORCH measured OH data comprises a constant intercept
and five smooths as shown in Table 2.10

Table 2 shows the deviance explained by each variable: the photolysis rate for nitric
acid was the most important predictor variable. The p-value associated with each
of the smoothed terms provides a measure of the significance of the relationship for
each predictor variable. All of the parameters were significant in explaining variation
in measured OH concentrations at the 0.1% significance level. Collinearity was not a15

concern as the variance inflation factors were less than the prescribed limit of five for
all variables. The value for the intercept was 1.32×106 molecule cm−3, the mean value
of the measured OH radical concentrations. When the constant intercept is removed
from the model, the deviance explained is reduced to just 24.7%. As well as assessing
the significance of the predictor variables through p-values, the relationship between20

the smoothed function of each predictor variable and the OH concentration was also
explored (Fig. 3).

The photolysis reaction selected for GAMME was

HNO3 + hν → OH + NO2 (R1)

Figure 3a shows that the value of the smooth increases almost linearly with increas-25

ing photolysis rate for nitric acid. The increasing gradient at high photolysis rates should
14615

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/8/14607/2008/acpd-8-14607-2008-print.pdf
http://www.atmos-chem-phys-discuss.net/8/14607/2008/acpd-8-14607-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
8, 14607–14642, 2008

Modelling OH trends
with generalized
additive models

L. S. Jackson et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

be treated with caution owing to the limited amount of data as shown by the rug plot.
The negative values of the smooth occur in periods when photolysis rates and OH
radical concentrations were both low, for example at night-time. Whilst the photolysis
rate for reaction (R1) produces the highest level of deviance explained, all of the pho-
tolysis variables have similar explanatory power and all would have been suitable for5

including in the model. In terms of interpretation, therefore, emphasis is placed on the
role of photolytic reactions in general which act as sources of OH radicals rather than
the role of the specific nitric acid photolysis reaction. The linear relationship (Fig. 3a)
reflects the formation of OH radicals through a number of reactions when photolysis is
important. For instance, OH can also be formed through photolysis of O3 and HONO:10

O3 + hν → O1D + O2 at wavelengths < 320 nm (R2)

O1D + H2O → 2OH (R3)

HONO + M + hν → OH + NO + M (R4)

and also indirectly as peroxy radicals are formed e.g. through the photolysis of car-
bonyl species (formaldehyde R5 and acetaldehyde R6):15

HCHO + hν(+O2) → CO + 2HO2 (R5)

CH3CHO + hν(+2O2) → HO2 + CH3O2 + CO (R6)

CH3O2 + NO → CH3O + NO2 (R7)

CH3O + O2 → HCHO + HO2 (R8)

HO2 + NO → OH + NO2 (R9)20

The large magnitude spanned by the y-axis in Fig. 3a also confirms that the photoly-
sis variable is the most important in explaining the deviance in measured OH concen-
trations.
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o-xylene is an aromatic hydrocarbon, a primary pollutant principally emitted by road
vehicles through incomplete fuel combustion and fuel evaporation. During the day the
degradation of o-xylene is typically initiated through reaction with OH radicals, with o-
xylene having a lifetime with respect to OH of approximately 20 h based on the average
diurnal OH radical concentration during TORCH.5

As the o-xylene concentration increases (Fig. 3b), the OH concentration decreases,
a relationship that would be expected with any primary emitted species (i.e. o-xylene
has no secondary sources in the atmosphere). For o-xylene concentrations greater
than about 8×108 molecule cm−3, the relationship with OH is broadly flat. The start of
the plateau region may indicate that the atmosphere switches from VOC dependence10

to NOx dependence, and so any further increases in o-xylene concentration beyond
this point have little impact on OH concentrations. The change in shape beyond a con-
centration of 3×109 molecule cm−3 should not be over-interpreted due to the paucity of
data and wide confidence intervals.

There is also a fairly simple relationship with acetone (Fig. 3c). With increasing15

concentrations of acetone, the smooth initially increases in value indicating an asso-
ciated increase in OH radical concentration. Beyond about 2.5×1010 molecule cm−3

the smooth is broadly flat indicating no further impact on OH radical concentrations.
Changes in shape at high concentrations of acetone should be treated with caution
due to the limited volume of data on which the smooth is based.20

Acetone is formed in the atmosphere through primary emissions from various bio-
genic and anthropogenic sources and also through the oxidation of VOCs (Goldstein
and Schade, 2000). For instance, the oxidation of propane and branched chain alka-
nes, branched chain alkenes and oxygenated species all contribute to acetone pro-
duction in the atmosphere. Biogenic sources include α and β-pinene and 2-methyl-3-25

buten-2-ol, which have acetone yields of 8–15% and 50% respectively (Goldstein and
Schade, 2000).

Once emitted or formed, there are a number of ways that acetone can influence OH
concentrations in the atmosphere. Firstly, it can react with OH through the following
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reaction:

OH + CH3COCH3 + O2 → CH3COCH2O2 + H2O (R10)

The peroxy radical formed in R10 can undergo reaction with NO, other RO2 or HO2
to form a variety of products. However, under the TORCH conditions, reaction with NO
is most likely (Emmerson et al., 2007):5

CH3COCH2O2 + NO → CH3COCH2O + NO2 (R11)

The CH3COCH2O radical decomposes very quickly to the peroxyacetyl (CH3CO3)
radical and formaldehyde:

CH3COCH2O → CH3CO3 + HCHO (R12)

The HCHO feeds back to OH through R5 and R9. The CH3CO3 radical reacts with10

NO to form CH3O2 (R13), which itself feeds back to OH through R7-R9:

CH3CO3 + NO + O2 → CH3O2 + NO2 + CO2 (R13)

Alternatively, the acetone can undergo photolysis to form CH3O2 and CH3CO3 radi-
cals:

CH3COCH3 + hν → CH3CO3 + CH3O2 (R14)15

These radicals will then regenerate OH through R13, and R7-R9. The photolysis
of acetone is therefore a radical and ultimately an OH source. The impact on OH of
its reaction with acetone will depend on the acetone and NO concentrations. For the
data used to construct the GAM, the destruction rate of acetone through photolysis
is 5.0×103 molecule cm−3 s−1 on average, compared with an OH destruction rate of20

9.2×103 molecule cm−3 s−1 . Note that the data used to construct the GAM include both
daytime and night-time data and so the photolysis source would be more important if
just the daytime hours were considered. Warneck (2001) has calculated that, globally
the photolysis sink of acetone is three times more important than that of OH.
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However, both of these destruction rates become insignificant when considering the
production rate of acetone through VOC oxidation. Although it is not possible to know
for sure the production rate of acetone in the atmosphere during TORCH, particularly
given that the biogenic species were not measured, a lower limit can be estimated
from the relevant measured hydrocarbons that go on to form acetone when they de-5

grade. These are i-butene, i-pentane, propane, o-xylene, 2-methyl-2-butene, i-butane,
2-methylpentane, propanol and 2,2-dimethylbutane. The combined production rate
from these 9 species is 1.2×105 molecule cm−3 s−1, almost a factor of 10 more im-
portant than the combined destruction rates through reaction with OH and photolysis,
despite this rate being a lower limit for reasons stated above. There is net produc-10

tion of acetone during TORCH, therefore, and the behaviour observed in Fig. 3c can
be explained through OH and acetone being formed through the same degradation
processes in the atmosphere.

Figure 3d shows the profile of HCHO with OH. The tails of the smooth should be
interpreted with caution due to the paucity of data and wide confidence intervals.15

Formaldehyde is both a primary pollutant (directly emitted from combustion processes
for instance) and a secondary pollutant (from the degradation of hydrocarbons). There
are two competing reactions to consider for HCHO destruction, photolysis (R5) and
reaction with OH (R15):

HCHO + OH(+O2) → CO + HO2 + H2O (R15)20

Under the conditions considered, the average rate of R5 was
2.9×105 molecule cm−3 s−1, whilst that of R15 was 4.5×105 molecule cm−3 s−1.
Therefore, reaction with OH is ∼1.5 times more important than photolysis in terms
of HCHO destruction. As the HCHO concentration increases, the rate of R15 will
increase, which may be expected to suppress the OH concentration. However, R5 and25

R15 produce HO2 radicals, which will subsequently reform OH through R9. These
latter processes would suppress the observed decrease in OH concentrations. The
competing and related processes for these species make specific interpretation of
the GAM results difficult, particularly for secondary pollutants. For most of the profile
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where there are more data points, it appears that as the HCHO concentration in-
creases that of OH decreases. The smooth, therefore, indicates that the destruction of
formaldehyde through reaction with OH radicals is more important than formaldehyde
regeneration through hydrocarbon oxidation.

Water plays a complex role in atmospheric chemistry affecting the rates of a wide5

range of reactions and is present in relatively large concentrations. The smooth re-
flects this complexity (Fig. 3e) with increases in water concentration associated with
both increasing and decreasing OH radical concentrations. Owing to the forma-
tion of OH through R2 and R3, it may be expected that as the water concentra-
tion increases, so does that of OH. Indeed, at lower concentrations of H2O, the OH10

does increase with H2O. However, as the H2O concentration increases past about
2.7×1017 molecule cm−3, the OH concentration begins to decrease. Such variations
probably indicate that there are physical processes occurring that are impacting the
OH, perhaps to do with temperature effects, or aerosol formation, that are not immedi-
ately obvious. These variations are also much less significant in explaining variations in15

OH radical concentration than contributions from other smooth functions. Variations in
the smooth function for photolysis rate, for example, are almost an order of magnitude
greater than variations in the smooth for water.

3.2 TORCH Modelled OH (GAMMO)

The GAM produced for the TORCH modelled OH data comprises a constant intercept20

and five smooths as shown in Table 3.
The value of the intercept is 1.63×106 molecule cm−3, the mean value of modelled

OH. Removing the intercept from the GAM reduces the deviance explained from 83.1%
to 27.6%. The observed relationship between the smoothed function of each predictor
variable and the OH concentration is shown in Fig. 4. Collinearity was not a concern as25

the variance inflation factors were less than the prescribed limit of five for all variables.
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The photolysis rate included in GAMMO represents the following reaction:

CH3CHO + hν(+O2) → HO2 + CH3O2 (R16)

As for measured OH, the smooth increases with photolysis rate in a broadly linear
manner (Fig. 4a). As with GAMME , the specific photolysis reaction is not particularly
important as all photolysis variables had a similar level of explanatory power and similar5

smooths. The important point is that as photolysis rates increase, so do OH concen-
trations consistent with photolytic reactions acting as a source of OH radicals.

Peroxyacetyl nitrate (PAN) is a secondary pollutant produced from the reaction of the
CH3CO3 radical with NO2 (Baird and Cann, 2005):

CH3CO3 + NO2 
 CH3CO3NO2 (R17)10

CH3CO3 is produced through the degradation of many hydrocarbons in the atmo-
sphere. The formation of PAN generally peaks in the late afternoon when concentra-
tions of hydrocarbons and OH radicals are relatively high and concentrations of nitric
oxide are relatively low (as NO also reacts with the CH3CO3 radical, R13). Figure 4b
shows that PAN behaves as a typical secondary pollutant, increasing as the concen-15

tration of OH increases, showing that both of these species are formed through photo-
chemical processes. The smooth flattens as the PAN concentrations increase beyond
1.0×1010 molecule cm−3, although there are fewer data here and the smooth should be
interpreted with caution.

Carbon monoxide plays a significant role in OH radical chemistry. It can react with20

OH radicals to produce HO2 radicals (Fig. 1), but is also produced as a by-product of
reactions involving the OH radical. For example, the degradation of hydrocarbons by
OH radicals can lead to the formation of formaldehyde which produces carbon monox-
ide on reaction with OH radicals (R15) or when broken down through photolysis (R5).
Carbon monoxide is also a primary pollutant emitted from vehicle engines on incom-25

plete combustion of hydrocarbon fuels. Such pollutants might be expected to display a
mix of primary and secondary pollutant behaviour. The concentration of CO increased
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during each day due to the build-up of primary emissions and secondary production
during the TORCH campaign. Low CO concentrations would be expected to be as-
sociated with low OH radical concentrations as both occur in the early morning. The
shape of the smooth in Fig. 4c shows that there is a complex relationship between CO
and OH for the reasons stated above.5

Isoprene is a hydrocarbon whose rate of emission increases strongly with increases
in temperature. It behaves as a primary pollutant with emissions from both plants
and road traffic. Its fate in the environment is degradation through reaction with OH
and NO3 radicals, as well as through reaction with ozone. This behaviour is reflected
in the smooth in Fig. 4d which shows reducing OH values with increasing isoprene10

concentrations where the majority of the data exist. The higher values for the smooth
result mainly from late morning and early afternoon observations on a single day when
OH radical concentrations were particularly high, probably due to high photolysis rates.

Ethanol is a primary pollutant; a volatile organic hydrocarbon emitted through solvent
usage and other industrial processes. Its fate in the atmosphere is to react with OH15

radicals producing a range of secondary pollutant products such as acetaldehyde. The
smooth (Fig. 4e) fits the shape of a primary pollutant with decreasing values associated
with increasing concentration of ethanol as the ethanol acts as a sink for OH radicals.

3.3 Prediction of OH radical concentrations

GAMME and GAMMO were validated by using them to predict OH radical concentra-20

tions. A bootstrapping approach was used which involved 1000 repeated samples
from the data. Each sample, comprising 75% of the data, was used to calibrate the
GAM model. The calibrated GAM was then used to predict OH concentrations for the
remaining 25% of the data. Figure 5 shows that the predicted values from GAMME and
GAMMO closely approximated the diurnal distribution of measured OH and modelled25

OH concentrations.
The GAMME model produced a superior fit to measured OH concentrations than

the MCM model (Table 4). GAMME produced a practically unbiased estimate of the
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mean diurnal OH concentration whereas the MCM model over-estimated by 16.3%.
The root mean squared error (RMSE) of GAMME , as a proportion of the mean diurnal
concentration, was appreciably lower than the RMSE of the MCM model.

The accuracy of predictions produced by GAMs may be compromised by the pres-
ence of autocorrelation. Examination of correlograms for measured OH on each day5

showed them to be autocorrelated and was confirmed by the Durbin-Watson test. The
autocorrelation coefficient at lag 1 was 0.45 for the residuals of GAMME compared to
0.85 for the measured OH data. For the residuals of GAMMO and modelled OH data,
the autocorrelation coefficients at lag 1 were 0.54 and 0.93, respectively. Fitting auto-
regression models (AR) to the measured OH data for each day and minimising the10

Akaike Information Criterion provided an estimate of the order of each AR process.
The order was found to be 1 on 15 of the 22 days with values ranging from 0 to 8 on
other days. The residuals for GAMME also exhibited autocorrelation with the estimated
order of the AR processes varying between 0 and 8 for individual days. The GAMME
model only eliminated autocorrelation in 6 of the 21 days on which it was originally15

present in the measured OH data.

4 Discussion

The shape of the smooths provides a general description of the role played by an
individual variable. All the photolysis variables exhibited an approximate positive linear
relationship with OH radical concentrations. The primary pollutants broadly displayed20

an inverse relationship between the concentration of the pollutant and the concentration
of OH radicals. At low concentrations, the secondary pollutants generally showed a
positive correlation between pollutant concentration and OH radical concentration. At
medium to high concentrations the shape of the smooth generally became flat around
the zero level. Whilst the shapes of the functions can provide an indication of the25

behaviour of a chemical, care must be taken not to over-interpret the results especially
for parts of the curves based on limited data.
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Table 5 shows that both models have a photolysis variable which is the most impor-
tant in terms of deviance explained ( 67–69%). It is so important that a GAM model
comprising only the photolysis variable produced predictions of measured OH concen-
tration almost as good as the five variable GAMME model (see Table 4). The deviance
explained by all photolysis variables was very high compared to other variables. There5

was also little difference between the variable selected for a GAM and the remaining
photolysis variables. Photolysis is clearly important as it is a strong source for OH rad-
icals both directly and indirectly. As well as having a photolysis variable, both models
included a mixture of primary and secondary pollutants. Interestingly, the two GAMs
contained no common species.10

The location of the TORCH experiment was a semi-rural environment with significant
atmospheric emissions from plants and trees. Such emissions would have been ac-
celerated by the high temperatures experienced that summer, which may explain the
presence of acetone and isoprene in these models, both of which can be emitted in
part from biogenic sources. As with all of the variables, they do not solely represent15

the contribution of that named chemical but represent the role played by a range of
species that exhibit broadly similar behaviour.

So what can the results tell us? For the measurements, the results suggest that
o-xylene, acetone, formaldehyde and water vapour are important, whilst for the model,
isoprene, CO, PAN and ethanol affect the OH. Isoprene concentrations were remark-20

ably high during the TORCH campaign, which explains the impact on the model re-
sults. However, its lack of impact on the measurements is surprising. This difference
may reflect the fact that isoprene was just one of many biogenic species present dur-
ing TORCH (unfortunately, no others were measured). It may only have represented
a small proportion of the biogenic carbon present and as such, may only have had a25

small impact on the measured OH radicals. This conjecture is reinforced somewhat
by the presence of acetone in GAMME , as acetone is a ubiquitous product of terpene
degradation, and is a strong indicator for biogenic processing. The presence of ace-
tone rather than isoprene in GAMME could, also, indicate that the behaviour of isoprene
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is not representative of some other biogenic hydrocarbons.
Another interesting difference is that the measurements show a dependence on o-

xylene concentrations, whilst those of the model do not. There are known to be de-
ficiencies with how the aromatic degradation schemes are represented in the MCM
(Jenkin et al., 2003). The fact that the measured OH concentrations show a depen-5

dence on an aromatic species whilst the modelled OH values do not, may suggest that
this area still needs work.

Although it is possible to read too much into the differences at this stage, it is interest-
ing that differences in the dependencies of modelled and measured OH concentrations
exist, other than those previously noted for NOX . Trying to understand the reason for10

such differences may help us to understand what causes modelled and measured OH
concentrations to differ so significantly on occasion.

The fit of the GAM models to the data was good and the predictions of OH concen-
trations were an improvement over the MCM model. The model prediction approach
using bootstrapping ensured that these predictions were based on data not used in15

the model construction reinforcing the credibility of the validated models. There re-
main limitations, however, with the results from the GAM models. Two sources of error
were prominent in the model residuals. Firstly, extremely high OH concentrations were
under-estimated by both GAMME and GAMMO. Figure 6 shows that all observations
greater than 4×106 molecule cm−3 were under-estimated by GAMME . The discrepancy20

is substantial with the mean value of these observations being under-estimated by
27%. Observations at very high and also very low concentrations were not as accu-
rately estimated as observations close to the mean level. The GAM models, therefore,
appear to provide a less robust description of the atmospheric chemistry at these ex-
tremes.25

Secondly, residuals for data points immediately following a gap in the time series
were higher than average. Replacing the single constant term in the GAM models with
separate constants for each day helped address this problem and improved the fit of
the GAMME model from 77.9% of deviance explained to 94.1%. A more complete 24
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hour record of measurements over a greater number of days may resolve this issue
without recourse to increasing the number of constant parameters.

Predictions produced by the GAM models, as well as being biased by errors asso-
ciated with extremely high OH concentrations and by observations that immediately
follow a gap in the measurement time series, are also prejudiced by autocorrelation in5

the data. This is not surprising. TORCH time series data were averaged or interpo-
lated to give measurements at intervals of 15 min. OH radical concentrations and the
concentrations of many atmospheric gases also follow a systematic diurnal pattern.

Autocorrelation could have been addressed by incorporating an explicitly defined
autocorrelation process into the GAM models. The improvement in predictive capability10

was weighed against the practical difficulty of modelling the numerous autocorrelation
processes present. Furthermore, even without explicitly defining the autocorrelation
processes the GAM models explained some of the autocorrelation. For example, the
autocorrelation at lag 1 was reduced by almost 50% by both GAMME and GAMMO. The
predictions achieved in Fig. 5 were judged adequate for this research so no adjustment15

was made. Further, the presence of autocorrelation had no effect on use of GAMME
and GAMMO for interpreting relationships and trends in the data.

5 Conclusions

The GAM methodology successfully produced models of measured and modelled OH
radical concentrations for the TORCH experiment. GAMME , the model for measured20

OH, explained 77.9% of the variation in the data and GAMMO, the model for modelled
OH, explained 83.1%. When used to predict OH concentrations the GAMME model
produced better results than the MCM model. GAMME accurately predicted the diur-
nal profile of OH concentrations and the predicted mean diurnal concentration from
GAMME under-estimated the measured mean by only 0.2% compared to 16.3% over-25

estimation by the MCM model. The RMSE of predicted values was reduced to 14.7%
of the mean diurnal concentration by GAMME from 93.4% achieved by the MCM model.
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The main weaknesses in the fit of the GAMs were, firstly, a consistent under prediction
of very high OH observations, and secondly, relatively large residual errors for obser-
vations immediately following a gap in the measurement time-series. The second point
may be related to autocorrelation in the time-series data which was not allowed for in
the GAM models. Whilst the predictions achieved using GAMME and GAMMO were5

adequate for this research, autocorrelation may be sufficiently influential in other data
to require explicit modelling within GAM models before they can be used for prediction
purposes. Weaknesses in the fit of GAMME and GAMMO and the presence of autocor-
relation in the data did not affect use of these models for interpretation of trends and
relationships in the atmospheric chemistry. Both models identified the key role played10

by photolysis reactions in the generation of OH radicals with photolysis variables ex-
plaining between 67% and 69% of the variation in OH concentrations. Both models
also included a combination of primary and secondary pollutants. Due to the statisti-
cal nature of the GAM models, chemical parameters selected for GAMME and GAMMO
were not interpreted as possessing unique properties but properties representative of15

a range of species. Care was also required not to over-interpret the shapes of smooth
functions for parts of the curves where there were limited data. In general, primary
pollutants were found to act as sinks for OH radicals with high concentrations of the
pollutant associated with low concentrations of the OH radical. Secondary pollutants
were generally found to have a positive correlation with OH radicals at low concen-20

trations. At medium to high concentrations, OH radicals were broadly insensitive to
changes in concentration of the secondary pollutants.

Besides the photolysis variables, GAMME suggested that o-xylene, acetone,
formaldehyde and water vapour were influential for OH concentrations and GAMMO
suggested that isoprene, CO, PAN and ethanol were influential. The differences25

in these dependencies of modelled and measured OH concentrations supplements
knowledge of differences for NOX already noted by Emmerson et al. (2007). Of partic-
ular interest were: the inclusion of o-xylene in GAMME and not in GAMMO when there
are known to be uncertainties in the degradation schemes of aromatic species (Jenkin
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et al., 2003); and, the inclusion of acetone in GAMME apparently as an indicator of
biogenic processing whilst it was ‘replaced’ by isoprene in GAMMO. The close fit to the
data achieved by the GAM models and successful prediction of the diurnal profile of OH
concentration supports the use of GAM models as a supplement to MCM modelling.
More comprehensive data with measurements over much longer periods of time would5

enhance the ability of GAMs to provide insight into the underlying atmospheric chem-
istry and help address the problems encountered with observations that immediately
follow gaps in the data.

GAM models have the potential to be applied more widely in modelling atmospheric
chemistry. They are particularly suited to identifying trends in historic data, filling-in10

gaps in measured data and supporting interpretation of the chemistry. They can be
used to forecast future concentrations once the models have been calibrated for a
specific location and once secular trends and autoregression have been addressed in
the modelling.
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Table 1. Key input constraints for TORCH. (a) Mean value of all 933 data points. (b) Mean
diurnal value calculated using the mean values of observations recorded at the same time of
day.

Input constraint Mean value
(a) (b)

Modelled OH (molecule cm−3) 1.63×106 1.10×106

Measured OH (molecule cm−3) 1.32×106 9.46×105

CO (ppb) 184 191
NO (ppb) 3 3
NO2 (ppb) 9 10
O3 (ppb) 32 28
Ethane (ppb) 2 2
Ethene (ppt) 432 512
Acetaldehyde (ppb) 2 2
Methanol (ppb) 1 1
Acetone (ppb) 1 1
Isoprene (ppt) 115 77
Benzene (ppt) 124 147
Photolysis rate parameter (s-1)

O3 to O(1D) 6.81×10−6 4.03×10−6

NO2 to NO+O(3P) 3.16×10−3 1.95×10−3

Mean Temperature (K) 293.5 291.5
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Table 2. TORCH measured OH (GAMME ) results comprising the variables selected, deviance
explained, p-values for each variable and variance inflation factors. Deviance explained is
shown as the cumulative total for each variable and the preceding variables.

Variable name Deviance p-value VIF
explained (%)

Intercept 0.0 <2×10−16 n/a
Photolysis rate of HNO3 67.6 <2×10−16 1.2
o-xylene 72.3 <2×10−16 1.2
Acetone 74.1 <2×10−16 1.2
Formaldehyde 75.7 2.15×10−13 1.0
Water 77.9 3.11×10−13 1.2
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Table 3. TORCH modelled OH (GAMMO) results comprising the variables selected, deviance
explained, p-values for each variable and variance inflation factors. Deviance explained is
shown as the cumulative total for each variable and the preceding variables.

Variable name Deviance p-value VIF
explained (%)

Intercept n/a <2×10−16 n/a
Photolysis rate of HNO3 68.3 <2×10−16 1.2
PAN 70.8 <2×10−16 1.4
Carbon monoxide 76.5 <2×10−16 2.8
Isoprene 80.6 <2×10−16 1.2
Ethanol 83.1 <2×10−16 3.3
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Table 4. Mean diurnal values and root mean squared error results for GAM and MCM models.
GAMME (photolysis) shows the results for GAMME with only the photolysis variable and the
constant term present.

TORCH Mean diurnal value RMS error
(molecule cm−3) (molecule cm−3)

Measured concentration 9.46×105 n/a
MCM model 1.10×106 8.87×105

GAMME 9.44×105 1.39×105

GAMMO 1.09×106 1.32×105

GAMME (photolysis) 9.50×105 1.46×105

14635

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/8/14607/2008/acpd-8-14607-2008-print.pdf
http://www.atmos-chem-phys-discuss.net/8/14607/2008/acpd-8-14607-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
8, 14607–14642, 2008

Modelling OH trends
with generalized
additive models

L. S. Jackson et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Table 5. GAM predictor variables classified by type.

GAMME GAMMO Variable type

J(HNO3) J(CH3CHO) Photolysis rate
o-xylene Isoprene Primary pollutant

Ethanol Primary pollutant
Formaldehyde Carbon monoxide Primary/

secondary pollutant
Acetone PAN Primary /secondary pollutant
Water vapour Meteorological data
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Fig. 1. Schematic of the key reactions of the OH radical in the atmosphere. The green lines
show radical initiation, the red lines radical termination and the blue lines represent propagation
reactions between radical species. RO2 represents a generic peroxy radical, RO an oxy radical,
ROOH an organic peroxide species and RCHO an aldehyde species.
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Fig. 2. Specimen smooth for OH concentration (molecule cm−3), the response variable, plotted
against the photolysis rate of O3 (to form O(1D)) (s−1), the predictor variable. The original data
is shown with blue circles and the smooth as a red line.
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Fig. 3. Smooth functions of the predictor variables for measured OH (a) photolysis rate, (b) o-
xylene, (c) acetone, (d) formaldehyde, (e) water. The concentrations of the predictor variables
are shown along the x-axes and the value of the smooth function on the y-axis. The distribution
of the data is indicated by the vertical marks along the x axis (rug plot). Confidence intervals at
95% are shown by dotted lines.

14639

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/8/14607/2008/acpd-8-14607-2008-print.pdf
http://www.atmos-chem-phys-discuss.net/8/14607/2008/acpd-8-14607-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
8, 14607–14642, 2008

Modelling OH trends
with generalized
additive models

L. S. Jackson et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

0e+00 1e−06 2e−06 3e−06

−
1e

+
06

1e
+

06
3e

+
06

(a)

photolysis rate (s−−1)

O
H

 c
on

ce
nt

ra
tio

n 
(m

ol
ec

ul
e 

cm
−−3

)

0.0e+00 1.0e+10 2.0e+10 3.0e+10

−
1e

+
06

0e
+

00

(b)

PAN (molecule cm−−3)
O

H
 c

on
ce

nt
ra

tio
n 

(m
ol

ec
ul

e 
cm

−−3
)

3e+12 5e+12 7e+12 9e+12

−
1e

+
06

0e
+

00
5e

+
05

(c)

CO (molecule cm−−3)

O
H

 c
on

ce
nt

ra
tio

n 
(m

ol
ec

ul
e 

cm
−−3

)

0.0e+00 1.0e+10 2.0e+10

0
50

00
00

15
00

00
0

(d)

isoprene (molecule cm−−3)

O
H

 c
on

ce
nt

ra
tio

n 
(m

ol
ec

ul
e 

cm
−−3

)

0e+00 2e+10 4e+10 6e+10

−
50

00
00

0
50

00
00

15
00

00
0

(e)

ethanol (molecule cm−−3)

O
H

 c
on

ce
nt

ra
tio

n 
(m

ol
ec

ul
e 

cm
−−3

)

Fig. 4. Smooth functions of the predictor variables for modelled OH (a) photolysis rate, (b)
peroxyacetyl nitrate (PAN), (c) carbon monoxide (CO), (d) isoprene, (e) ethanol. The concen-
trations of the predictor variables are shown along the x-axes and the value of the smooth
function on the y-axis. The distribution of the data is indicated by the vertical marks along the
x-axis (rug plot). Confidence intervals at 95% are shown by dotted lines.
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Fig. 6. Measured OH concentration plotted against the residuals for GAMME (blue circles) and
compared to the zero residual level (dashed line).
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